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In this paper, we are interested in the derivation of macroscopic equations from kinetic
ones using a moment method in a relativistic framework. More precisely, we establish
the general form of moments that are compatible with the Lorentz invariance and
derive a hierarchy of relativistic moment systems from a Boltzmann kinetic equation.
The proof is based on the representation theory of Lie algebras. We then extend this
derivation to the classical case and general families of moments that obey the Galilean
invariance are also constructed. It is remarkable that the set of formal classical limits
of the so-obtained relativistic moment systems is not identical to the set of classical
moments quoted in Ref. 21 and one could use a new physically relevant criterion to
derive suitable moment systems in the classical case. Finally, the ultra-relativistic limit
is considered.

KEY WORDS: moment system, relativistic kinetic theory, entropy minimisation
problem

1. INTRODUCTION

Particle systems may be modelled at many different levels (microscopic, meso-
scopic or macroscopic) depending on the scale of the studied physical phenomena
and on the desired degree of accuracy for its description. In many situations,
the precise knowledge of some physical quantities (density, momentum, energy,
viscosity, heat flux, etc) is crucial and one cannot use the standard Euler or Navier-
Stokes equations to describe such quantities. On the other hand the use of more
refined models as kinetic equations is too expensive in general and makes ex-
tremely slow any realistic and accurate numerical simulation. This is due to the
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Toulouse 3, 118 route de Narbonne, F-31062 Toulouse cedex 9, France; e-mail: bagland@mip.ups-
tlse.fr, degond@mip. ups-tlse.fr, lemou@mip.ups-tlse.fr

621

0022-4715/06/1100-0621/0 C© 2006 Springer Science+Business Media, Inc.



622 Bagland, Degond and Lemou

complexity of the kinetic equation (coupling Vlasov equation with Poisson or
Maxwell equations) and to the number of involved variables (one time variable
plus six space-velocity coordinates). Therefore, it is necessary in general to de-
rive more reduced models from kinetic equations which are able to describe the
desired physical quantities with a sufficient degree of accuracy. This has been a
challenging subject of a large number of works in the past and still stimulates
many current researches.

There are mainly two approaches to derive macroscopic equations from ki-
netic ones. The first one consists in deriving Euler or Navier-Stokes like equations
with various expressions for the viscosity and the heat flux. This strategy supposes
that the particle distribution function is close to the so-called thermodynamical
equilibrium and can be expanded into successive approximations about this equi-
librium according to the well known Chapman-Enskog or Hilbert procedures. The
second strategy consists in directly deriving systems of equations involving the
desired macroscopic quantities (mass, momentum, energy, etc), which are mo-
ments of the distribution function with respect to the velocity variable. To close
the obtained systems, this strategy also needs an assumption on the distribution
function which is not necessarily close to the equilibrium. For instance, Grad (11)

uses an expansion in terms of Hermite polynomials whereas in Refs. [6, 21–23],
the closure is based on the entropy minimization principle. In this last strategy, a
first and important step is to derive suitable sets of moments in the velocity space,
that is sets which are compatible with the Galilean invariance in the classical case
and with the Lorentz invariance in the relativistic case. To our knowledge, the case
of the Lorentz invariance has not been considered yet. Our work is intended to
investigate this problem.

In this paper, the general form of moment spaces that satisfy the Lorentz
invariance is determined. More precisely, we give the more general form of finite
dimensional spaces of polynomial functions of the energy and momentum which
obey the Lorentz invariance. The proof is based on the representation theory of Lie
algebras. (9,13) We then consider the classical and ultra-relativistic limits of these
spaces. For the sake of completeness, we also give a similar result for Galilean
invariant spaces in the appendix.

Hierarchies of moment systems have already been derived in several works
in both the relativistic and the classical cases, and we refer the reader to Refs. 2,
7, 12, 17, 22, 23 and references therein for detailed descriptions. In these works,
various closure strategies are used and the question of classical and ultra-relativistic
limits is also investigated. However, the problem of deriving a general form of
Lorentz invariant sets of moments has not been addressed at a rigorous level.
Our purpose here is to give a rigorous basis and a systematic way to select
the families of moments that are compatible with the Lorentz invariance prin-
ciple. Classical and ultra-relativistic limits of the so obtained systems are also
discussed.
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In this paper, we restrict ourselves to the case of special relativity. The case of
general relativity would certainly be also very interesting but we do not consider
it here. Before going to the presentation of our main results and for the sake of
self consistency, we first recall some basic notions in relativistic mechanics. For
much more detailed and complete presentations, we refer to Refs. 4,12,18.

1.1. The Relativistic Kinetic Model

Unlike classical mechanics where time is absolute, that is independent of the
frame, a time is attached to each frame in relativistic mechanics. Therefore, the
position of a particle is defined by its temporal and spatial coordinates. Let R and
R′ be two inertial frames such that R′ moves with the velocity u with respect to
R. Denote by (t, x) and (t ′, x ′) the time-space coordinates respectively in R and
R′. Then, the change of frames is given by

t = γu

(
t ′ + u · x ′

c2

)
and x = x ′ + (γu − 1)(u · x ′)

u

|u|2 + γuut ′, (1)

where c denotes the speed of light and

γu =
(

1 − |u|2
c2

)−1/2

.

The vector �x = (ct, x) is called the radius four-vector in R. Let �x ′ = (ct ′, x ′)
denote the radius four-vector in R′. Then, (1) reads �x = Lu �x ′, with

Lu �a =
(

γu

(
a0 + u · a

c

)
, a + (γu − 1)(u · a)

u

|u|2 + γu
u

c
a0

)
, (2)

where �a = (a j )0≤ j≤3 = (a0, a) with a = (a j )1≤ j≤3. The function Lu is called the
proper Lorentz transformation associated to the velocity u. By analogy, any vector
�y = (y j )0≤ j≤3 whose components transform like those of �x under a change of
inertial frame is called a four-vector. An important four-vector is the energy-
momentum four-vector �p = (ε/c, p), where

ε = γ mc2 and p = γ mv, with γ =
(

1 − |v|2
c2

)− 1
2

, (3)

denote respectively the energy and the momentum of a relativistic particle with
mass m and velocity v. It also reads

ε = c
√

m2c2 + |p|2 and v = p

m
√

1 + |p|2
m2c2

. (4)

Similarly, any tensor of rank n whose components transform like those of the
tensor product of n four-vectors under a change of inertial frame is called a
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four-tensor. Let us now recall that kinetic theory generalizes to the relativistic case
(see Ref. 4, 12, 18). During an elastic collision between two relativistic particles
with momenta p and p∗, the conservation of momentum and energy holds, that is

p + p∗ = p� + p�
∗ and ε(p) + ε(p∗) = ε(p�) + ε(p�

∗), (5)

where p� and p�
∗ denote the post-collisional momenta. As in the classical

case, we may then derive the relativistic Boltzmann equation, which reads (see
Refs. 4,10,12,18)

∂t f + v · ∇x f = Q R( f, f ), (6)

with

Q R( f, f ) =
∫ ∫

S
2×R

3
σ (p, p∗, p�, p�

∗)vM (p, p∗)( f � f �
∗ − f f∗)dp∗dω, (7)

where f = f (t, x, p), f∗ = f (t, x, p∗), f � = f (t, x, p�), f �
∗ = f (t, x, p�

∗),
σ denotes the cross-section, vM the Møller velocity,

vM (p, p∗) = |vrel|εε∗ − c2 p · p∗
εε∗

=
(

|v − v∗|2 − |v × v∗|2
c2

)1/2

, (8)

and dω is an element of solid angle in the centre of mass system. The structure of
the relativistic Boltzmann equation (6) is similar to the classical one. Its relativistic
nature appears in the relationship (4) between momentum and velocity and in the
definition of the Møller velocity (8). This relativistic aspect also appears implicitly
in the definition of σ , which is a non-negative function of the energy s and the
deviation angle θ (in the centre of mass system), both given by

s = (ε + ε∗)2

c2
− |p + p∗|2,

and

cos θ = (ε − ε∗)(ε� − ε
�
∗) − c2(p − p∗) · (p� − p�

∗)

(ε − ε∗)2 − c2|p − p∗|2 .

In the case of charged particles (also called the Coulomb case), the cross-
section σ reads, in the centre of mass system, (see Ref. 1; Sec. 81, Problem 6),

σ =
(

qq∗
4πε0

)2 1

8c4(ε̄ + ε̄∗)2| p̄|4 sin4(θ/2)

× ((ε̄ε̄∗ + c2| p̄|2)2 + (ε̄ε̄∗ + c2| p̄|2 cos θ )2

− 2(m2 + m2
∗)c6| p̄|2 sin2(θ/2)), (9)
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where (ε̄/c, p̄) and (ε̄∗/c, p̄∗) denote respectively the energy-momentum four-
vectors �p and �p∗ in the centre of mass system (in this system, we have p̄ = − p̄∗
and then | p̄| = | p̄∗|.

Let us point out that, as for the classical Boltzmann equation, the mass,
momentum and energy are locally conserved quantities for (6) and (7) and that the
relativistic Boltzmann equation possesses an entropy. In the relativistic case, the
jacobian of the application (p, p∗) �→ (p�, p�

∗) is not equal to 1. However, since

vM (p, p∗) = vM (p�, p�
∗) ∂(p�,p�

∗)
∂(p,p∗) , we still have the following weak formulation,

∫
R

3
Q R( f, f )ϕdp

= 1

4

∫ ∫ ∫
S

2×R
3×R

3
σvM ( f � f �

∗ − f f∗)(ϕ + ϕ∗ − ϕ� − ϕ�
∗) dp dp∗ dω.

We then infer from (5) that 1, p and ε are locally conserved quantities. Moreover,
choosing ϕ = ln f , we obtain the local dissipation law of the entropy S( f ) =∫

R
3 ( f ln f − f ) dp, that is

∂t S( f ) + ∇x ·
∫

R
3
v( f ln f − f ) dp =

∫
R

3
Q R( f, f ) ln f dp ≤ 0. (10)

Equilibrium states of (6) are defined to be the functions that cancel the right hand
side of (10) or, equivalently, the functions f ≥ 0 such that Q R( f, f ) = 0. They
are the local relativistic Maxwellians

M(p) = A exp (−β0ε(p) + β · p) with A ∈ R+, β0 ∈ R+, β ∈ R
3. (11)

In the case of degenerate gases (Fermi or Bose gas), the collision operator and the
entropy should be modified accordingly(3) but we do not consider this case herein.

1.2. Setting of the Problem

Formally, multiplying (6) by 1, p and ε, integrating with respect to p and
closing this system with the Maxwellian (11) that minimizes the entropy at fixed
mass, momentum and energy, we recover the relativistic hydrodynamic equations.
We are looking here for moment spaces M that generalize the fluid dynamic
approximation and thus that contain 1, p and ε.

Moreover, the space M ought to respect physical symmetries. A specificity
of the relativistic case is that the Galilean invariance is replaced by the Lorentzian
invariance. More precisely, let L be either a proper Lorentz transformation or a
rotation of the axis of the spatial coordinate system, that is L is either defined by
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(2) for some u ∈ R
3, |u| < c or given by

L =
(

1 0

0 O

)
, (12)

where O is a 3-dimensional orthogonal matrix. Then, L corresponds either to a
change of frame or to a change of axis in the momentum space. Let us denote
respectively by �x ′ and �p′ the radius and the energy-momentum four-vectors in the
new system of coordinates. We have �x = L−1 �x ′, �p = L−1 �p′,

dp

γ (p)
= dp′

γ (p′)
, σ (p, p∗, p�, p�

∗) = σ (p′, p′
∗, p′�, p′�

∗ ), (13)

and

γ (p)vM (p, p∗)dp∗ = |vrel |(εε∗ − c2 p · p∗)
dp∗

m2c4γ (p∗)

= |vrel |(ε′ε′
∗ − c2 p′ · p′

∗)
dp′

∗
m2c4γ (p′∗)

= γ (p′)vM (p′, p′
∗)dp′

∗, (14)

where

γ (p) =
√

1 + |p|2
m2c2

.

Therefore, if f denotes a solution to (6) and (7) then the function f ′ defined in the
new system of coordinates by f ′(t ′, x ′, p′) = f (t, x, p) is a solution to

∂t ′ f ′ + v(p′) · ∇x ′ f ′ = Q R( f ′, f ′).

This corresponds to the Lorentzian invariance. The translations and the rota-
tions that we consider in the classical case are replaced, in the relativistic case,
by the proper Lorentz transformations and the rotations of the form (12). We
want the space M to be compatible with this invariance. More precisely, let
(ϕ1( �p), . . . , ϕN ( �p)) be a moment basis for M. Using the radius four-vector
�x = (x j )0≤ j≤3 and the energy-momentum four-vector �p = (p j )0≤ j≤3, the
Boltzmann equation (6) also reads

p j ∂ f

∂x j
= mγ (p)Q R( f, f ). (15)

Here as in the rest of this paper, we make use of the Einstein summation convention.
Multiplying (15) by ϕk( �p)/γ (p) for some k ∈ [[1, N ]] and integrating with respect
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to p, we obtain

∂

∂x j

∫
R

3
p jϕk( �p) f (�x, �p)

dp

γ (p)
= m

∫
R

3
ϕk( �p)Q R( f, f )(�x, �p)dp, k ∈ [[1, N ]].

(16)
We set ϕ̃k = ϕk ◦ L−1. Then, we deduce from (13) and (14) that, in the new system
of coordinates, (16) reads

∂

∂x ′ j

∫
R

3
p′ j ϕ̃k( �p′) f ′(�x ′, �p′)

dp′

γ (p′)

= m

∫
R

3
ϕ̃k( �p′)Q R( f ′, f ′)(�x ′, �p′)dp′, k ∈ [[1, N ]].

Consequently, a moment space M is said to be compatible with the Lorentzian
invariance if there exist some constants λ j,k such that ϕ̃k = ∑N

j=1 λ j,kϕ j for k =
1, . . . , N . We are looking here for spaces that are invariant under any proper
Lorentz transformation and any rotation in the momentum space.

Moreover, as in Ref. 21, we introduce the convex cone

Mc :=
{

r ∈ M :
∫

R
3

exp (r (ε(p), p))dp < ∞
}

,

for every space M constituted of functions of p and ε. In Ref. 21, Levermore
introduced admissible moment spaces. A moment space M is said to be admissible
if the associated cone Mc has a nonempty interior in M. We are only interested in
admissible spaces.

Summarizing, we are looking for finite dimensional spaces M of polynomial
functions of the energy and momentum that satisfy

(I) span (1, p, ε) ⊂ M,
(II) M is invariant under any proper Lorentz transformation and any rotation

in the momentum space,
(III) the cone Mc has a nonempty interior in M.

Here as in the rest of the paper, the span notation is applied to a collection of scalars,
vectors and tensors and means all linear combinations of their components.

In order to construct spaces satisfying conditions (I), (II) and (III), a first idea
is to consider tensor products of the four-vector �p. Thus, for every n ∈ N∗, we set

Tn( �p) = ⊗n �p, (17)

and denote by Pn the space generated by the components of Tn . We point out that
each Pn satisfies condition (II). Since span (1, p, ε) is itself invariant under any
proper Lorentz transformation and any rotation in the momentum space, we set,
for every n ∈ N∗,

P̃n = span (1, p, ε, Tn). (18)
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It only remains to check that condition (III) holds. Given r ∈ P̃n ,

r = −
∑

(i1,...,in )∈[[0,3]]n

αi1,...,inT i1,...,in
n ( �p) + β + γ · p + δε,

it suffices to suppose that the coefficient α0,...,0 in front of T 0,...,0
n ( �p) = (ε/c)n is

large enough so that r belongs to P̃nc . Consequently, the space P̃n fulfils each of
our requirements. Moreover, we point out that any vector sum of the spaces P̃n

also satisfies conditions (I), (II) and (III).
We notice that, contrary to the classical case where tensor products of the

velocity vector are independent (up to symmetries), tensor products of the energy-
momentum four-vector are not independent. Indeed, any component of Tn−2k may
be written as a linear combination of components of Tn , for every k ∈ [[0, [n/2]!]],
where [x] denotes the integer part of x. Indeed, we have

T i1,...,in−2

n−2 = 1

m2c2

∑
(i, j)∈[[0,3]]2

gi, jT i1,...,in−2,i, j
n ,

where (i1, . . . , in−2) ∈ [[0, 3]]n−2, g0,0 = 1, g1,1 = g2,2 = g3,3 = −1 and gi, j = 0
for i �= j . We say that m2c2Tn−2 is obtained from Tn by contraction with respect
to the last two indices. Thus, any component of Tn−2k , for k ∈ [[0, [n/2]]], belongs
to P̃n . By contrast to the classical case, we do not obtain any additional moment
spaces with the contraction operation.

However, a second idea to construct spaces that satisfy condition (II) is by
considering the orthogonal complement of Pn−2 into Pn . More precisely, let us
consider the tensor space, spanned by Tn and all the tensors obtained from Tn by
contraction over an arbitrary number of pairs of indices (plus symmetrization).
Let us denote this tensor space by Tn . Obviously, from the remark above, the
components of the tensors in Tn span the polynomial space Pn , as much as
the components of the sole tensor Tn did. However, within Tn , we can consider
the subspace T̂n of tensors spanned by all contractions of Tn over at least one pair
of indices (plus symmetrization). Obviously, again using the remark above, the
components of T̂n span the polynomial space Pn−2. The orthogonal supplement
of T̂n in Tn (with respect to the Minkowski inner product on tensors induced by
the Minkowski inner product on four-vectors) is a one dimensional vector space
spanned by a symmetric tensor Sn( �p). The components of Sn( �p) form a Lorentz
invariant space denoted by Mn which is strictly included in Pn as soon as n ≥ 2.
We shall actually prove that Mn is an irreducible Lorentz invariant space, i.e. there
is no non-trivial invariant subspace strictly included in Mn .

Now, setting M̃n = Mn + span(1, p, ε), we construct a moment space which
satisfies criteria (I) and (II). It remains to check that it satisfies condition (III). In
fact, condition (III) is satisfied as much as for P̃n since M̃n differs from P̃n by
combinations of monomials of (ε, p) of degree n − 2 at most. Therefore, M̃n is
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an admissible moment space with no non-trivial admissible moment space strictly
included in it.

To show these results, we first use the representation theory of Lie groups
and Lie algebras to determine all irreducible spaces that satisfy condition (II) (cf.
Theorem 1 and Proposition 2). Then, in Theorem 3 we identify these spaces with
those obtained through the construction detailed above. In Sec. 3, we consider
the classical limit of these relativistic moment spaces and suggest a new criterion
for choosing moment spaces in the classical case. In Sec. 4, we are interested in
the ultra-relativistic case. We then present the moment closure problem in Sec. 5.
For the sake of completeness, the proof of Theorem 1 is given in Sec. 6. Finally,
the representation theory of Lie groups and Lie algebras may also be used, in the
classical case, to determine the spaces that are invariant under any rotation and
this is stated in the appendix.

2. MOMENT SYSTEM HIERARCHY AND LORENTZ INVARIANCE

We are looking for the finite dimensional subspaces of R[ε, p1, p2, p3] that
satisfy conditions (I), (II) and (III). We consider the Minkowski space R

4 endowed
with the non-degenerate symmetric bilinear form g defined by

g(a, b) = a0b0 − a1b1 − a2b2 − a3b3, a, b ∈ R
4.

The set of real matrices L ∈ M (4, R) that leave g invariant (i.e. such that
g(Lx, Ly) = g(x, y) for all x, y ∈ R

4) forms the generalized orthogonal group
O(1, 3). The set of matrices L from O(1, 3) such that det(L) = 1 and L00 ≥ 1
(i.e. there is no time inversion) is called the proper Lorentz group and denoted by
SO(1, 3)e. This group is generated by the proper Lorentz transformations and the
rotations in the momentum space. Therefore, we consider the following action of
SO(1, 3)e on the subspace Pn composed of the polynomials of R[y0, y1, y2, y3]
with total degree less or equal to n,

ϕ : SO(1, 3)e −→ GL(Pn)

L �−→ {R(y0, y1, y2, y3) �→ R(L−1(y0, y1, y2, y3))}. (19)

Finding the finite dimensional subspaces of R[ε, p1, p2, p3] that satisfy condition
(II) amounts to finding the irreducible subrepresentations of (ϕ,Pn). This is the
aim of the following theorem, which rests on the representation theory of Lie
groups and Lie algebras. Its proof is postponed to Sec. 6.

Theorem 1. A space W is an irreducible subrepresentation of (ϕ,Pn) if and
only if there exist j ∈ [[0, [n/2]]] and some real numbers (λk)0≤k≤ j such that W is
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generated by the real parts and the imaginary parts of

j∑
k=0

λk

(
y2

0 − y2
1 − y2

2 − y2
3

) j−k
q∑

m=max(q−r,0)

(n − 2 j − r )!r !

(n − 2 j − r − m)!(r − q + m)!

(
q
m

)

(y0 + y3)m(y0 − y3)r−q+m(y1 + iy2)n−2 j−r−m(y1 − iy2)q−m, (20)

for q, r ∈ [[0, n − 2 j]], q + r ≤ n − 2 j . Moreover, any subrepresentation of
(ϕ,Pn) is a direct sum of irreducible subrepresentations.

Here as in the rest of this paper, [x] denotes the integer part of x ∈ R and(
q
m

)
stands for the binomial coefficient. This theorem describes all the irre-

ducible representations of (ϕ,Pn). We deduce then all the spaces that satisfy
condition (II) by replacing (y0, y1, y2, y3) with (ε/c, p1, p2, p3). We notice that,
since (ε/c)2 − |p|2 = m2c2, the factor (y2

0 − y2
1 − y2

2 − y2
3 ) j−k in (20) is replaced

with the constant (m2c2) j−k . Therefore, we have the following proposition.

Proposition 2. For every l ∈ N, let Ml denote the vector space generated by the
real parts and the imaginary parts of

q∑
m=max(q−r,0)

(l − r )!r !

(l − r − m)!(r − q + m)!

(
q
m

)

(ε/c + p3)m(ε/c − p3)r−q+m(p1 + i p2)l−r−m(p1 − i p2)q−m, (21)

for q, r ∈ [[0, l]], q + r ≤ l. Each Ml satisfies condition (II) and is irreducible, i.e.
there is no non-trivial strict subspace of Ml which is invariant under the proper
Lorentz group. Moreover, a finite dimensional subspace M of R[ε, p1, p2, p3]
satisfies condition (II) if and only if there exist N ∈ N and some lk ∈ N, k =
1, . . . , N such that M is the direct sum of the Mlk , k = 1, . . . , N.

Proof: It is clear that Ml satisfies condition (II). Let us assume that Ml is not
irreducible. Then, there exists a non-trivial subspace Q of Ml that is stable under
the proper Lorentz group. Let R be a supplement of Q in Ml . Then, Ml = Q ⊕ R.
Let (qs)1≤s≤S be a basis of Q and (rt )1≤t≤T a basis of R. Let π denote the function
defined by π (P(y0, y1, y2, y3)) = P(ε/c, p1, p2, p3), for every P ∈ Pl . Then,
Ml = π (�l), where �l is the real vector space generated by the real parts and the
imaginary parts of (20) with n = l and j = 0. For every 1 ≤ s ≤ S and 1 ≤ t ≤ T ,
there exist q̃s, r̃t ∈ �l such that qs = π (q̃s) and rt = π (r̃t ). Let us denote by Q̃ and
R̃ the vector spaces generated respectively by (q̃s)1≤s≤S and (r̃t )1≤t≤T . We have
ker(π ) = (y2

0 − y2
1 − y2

2 − y2
3 − m2c2)Pl−2 and we deduce from (57) that

Pl = ⊕l
k=0�k ⊕ ker(π ), (22)
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because �k = �̃
(k)
k,0 for k ∈ [[0, l]]. Thus, π |�l is an injection and dim(�l) =

dim(Ml). Consequently, �l = Q̃ ⊕ R̃ and Q̃ is a non-trivial subspace of �l that is
stable under the proper Lorentz group, which contradicts the irreducibility of �l .

Let M be a finite dimensional subspace of R[ε/c, p1, p2, p3] that satisfies
condition (II). It remains to check that M is a direct sum of spaces Ml . We denote
by (mi )1≤i≤N a basis of M. For every i ∈ [[1, N ]], let m̃i ∈ R[y0, y1, y2, y3] be
such that π (m̃i ) = mi . Let M̃ ⊂ R[y0, y1, y2, y3] be the smallest vector space that
contains all the m̃i and is stable under the proper Lorentz group. We have M̃ ⊂ Pn

for some n ∈ N. By Theorem 1, M̃ = ⊕α�α , where (�α)α denote irreducible
subrepresentations of (ϕ,Pn). The vector space π (M̃) contains M. Let m ∈ π (M̃).
Then, m = π (m̃) with m̃ ∈ M̃. Thus,

m̃(y0, y1, y2, y3) =
N∑

i=1

∑
L∈SO(1,3)e

λi,Lm̃i (L−1(y0, y1, y2, y3)),

where the coefficients λi,L , are almost all null. Consequently,

m(ε/c, p1, p2, p3) =
N∑

i=1

∑
L∈SO(1,3)e

λi,Lmi (L−1(ε/c, p1, p2, p3)),

Hence m ∈ M and π (M̃) = M. We thus deduce that M = ∑
α π (�α) = ∑N

k=1 Mlk ,
where we have only kept the spaces Mα that are distinct. By (22), the spaces
(Mk)0≤k≤n are linearly independent, which completes the proof of Proposition 2.
�

We now make the connection between Ml and the orthogonal complement
construction stated at the end of Sec. 1.2. Before stating the result, we introduce
some notations. For any tensor T of order k, we denote by T the symmetric part
of T, that is the tensor whose components are

T
j1,..., jk = 1

k!

∑
σ∈∑

k

T jσ (1),..., jσ (k) ( j1, . . . , jk) ∈ [[0, 3]]k,

where �k denotes the symmetric group of order k. Let l ∈ N. We recall that Tl is
defined by (17). We define

Tl = span

⎛
⎝g ⊗ . . . ⊗ g︸ ︷︷ ︸

k times

⊗Tl−2k( �p), 0 ≤ k ≤ [l/2]

⎞
⎠ ,

T̂l = span

⎛
⎝g ⊗ . . . ⊗ g︸ ︷︷ ︸

k times

⊗Tl−2k( �p), 1 ≤ k ≤ [l/2]

⎞
⎠ .



632 Bagland, Degond and Lemou

Obviously Tl = T̂l ⊕ TlR. Finally, the Minkowski form on tensors induced by the
Minkowski form on four-vectors is given by

〈T1, T2〉 = gi1, j1 . . . gil , jl T
il ,...,il

1 T j1,... jl
2 , (23)

where T1 and T2 are two tensors. If 〈T1, T2〉 = 0 the two tensors are said orthogonal.
Now, we state the

Theorem 3. Let l ∈ N. Then, the vector space Ml given by Proposition 2 is
generated by the components of the tensor Sl ( �p) defined by

Sl ( �p) = Tl( �p) +
[l/2]∑
k=1

(−m2c2)k(l − k)!

4k(l − 2k)!k!
g ⊗ . . . ⊗ g︸ ︷︷ ︸

k times

⊗Tl−2k( �p), (24)

and we have the following orthogonal decomposition

Tl = Sl ( �p)R
⊥⊕T̂l .

Proof: Let us denote by Ml the vector space generated by the components of
Sl ( �p). For k ≥ 1 and l ≥ 2, we have

gi1,i2 g ⊗ . . . ⊗ g︸ ︷︷ ︸
k times

⊗Tl−2k( �p)
i1,i2,i3,...,il = 4k(l − k + 1)

l(l − 1)
g ⊗ . . . ⊗ g︸ ︷︷ ︸

k−1 times

⊗Tl−2k( �p)
i3,...,il

+ m2c2 (l − 2k)(l − 2k − 1)

l(l − 1)
g ⊗ . . . ⊗ g︸ ︷︷ ︸

k times

⊗Tl−2−2k( �p)
i3,...,il

, (25)

for any (i3, . . . , il ) ∈ [[0, 3]]l−2. Consequently, this leads to

gi, j Sl ( �p)i, j,i1,...,il−2 = 0,

for any (i1, . . . , il−2) ∈ [[0, 3]]l−2 and then, Sl( �p) has at most (l + 1)2 independent
components. Thus, dim Ml ≤ dim (Ml). But, by (Ref. 5, Lemma 17.2.1), Sl is a
four-tensor and therefore, Ml satisfies condition (II). Moreover, the components
of Sl ( �p) are polynomials with degree l from Pl . By Theorem 1, we conclude
that Ml = Ml . We deduce from (25) that the one-dimensional space generated
by the tensor Sl ( �p) is the orthogonal supplement of T̂l in Tl with respect to the
Minkowski form (23). �

We now write down the moment spaces that arise in (21) for l = 1, l = 2, l =
3 and l = 4. Moreover we also consider here conditions (I) and (III).
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Case l = 1 M1 = span (ε, p1, p2, p3).
This is the space generated by the four-vector �p. In order to satisfy condition (I),
we add the mass and obtain the moment space P̃1 = span(1, �p). Whereas M1 is a
4-dimensional space, P̃1 is a 5-dimensional space. As stated in Sec. 1, P̃1 satisfies
condition (III). The corresponding equations read

∂

∂t

∫
R

3
f dp + ∇x ·

∫
R

3
f v dp = 0, (26)

∂

∂t

∫
R

3
f p dp + ∇x ·

∫
R

3
f v ⊗ p dp = 0, (27)

∂

∂t

∫
R

3
f ε dp + c2∇x ·

∫
R

3
f p dp = 0. (28)

Case l = 2

M2 = span (εp, (pi p j )i �= j , (m2c2 + |p|2 + (p j )2)1≤ j≤3).

The space M2 is a 9-dimensional space. Adding 1, p and ε, we obtain the 14-
dimensional space P̃2 = span (1, �p, �p ⊗ �p) which satisfies conditions (I), (II) and
(III). The space P̃2 leads to the following 14-moment system

∂

∂t

∫
R

3
f dp + ∇x ·

∫
R

3
f vdp = 0, (29)

∂

∂t

∫
R

3
f pdp + ∇x ·

∫
R

3
f v ⊗ pdp = 0, (30)

∂

∂t

∫
R

3
f εdp + c2∇x ·

∫
R

3
f pdp = 0, (31)

∂

∂t

∫
R

3
f εpdp + c2∇x ·

∫
R

3
f p ⊗ pdp =

∫
R

3
Q R( f, f )εpdp, (32)

∂

∂t

∫
R

3
f p ⊗ pdp + ∇x ·

∫
R

3
f v ⊗ p ⊗ pdp =

∫
R

3
Q R( f, f )p ⊗ pdp. (33)

Case l = 3

M3 = span (ε(pi p j )i �= j , p1 p2 p3, (ε(m2c2 + |p|2 + 3(p j )2))1≤ j≤3,

(p j (3m2c2 + 3|p|2 + (p j )2))1≤ j≤3, (pi (m2c2 + |p|2 + (p j )2))i �= j ).

The dimension of M3 is thus 16. If we also consider the mass, momentum and
energy, we obtain the space P̃3 = span (1, �p, �p ⊗ �p ⊗ �p), whose dimension is 21.
The space P̃3 satisfies conditions (I), (II) and (III) and leads to the moment system

∂

∂t

∫
R

3
f dp + ∇x ·

∫
R

3
f vdp = 0, (34)
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∂

∂t

∫
R

3
f pdp + ∇x ·

∫
R

3
f v ⊗ pdp = 0, (35)

∂

∂t

∫
R

3
f εdp + c2∇x ·

∫
R

3
f pdp = 0, (36)

∂

∂t

∫
R

3
f εp ⊗ pdp + c2∇x ·

∫
R

3
f p ⊗ p ⊗ pdp

=
∫

R
3

Q R( f, f )εp ⊗ pdp, (37)

∂

∂t

∫
R

3
f p ⊗ p ⊗ pdp + ∇x ·

∫
R

3
f v ⊗ p ⊗ p ⊗ pdp

=
∫

R
3

Q R( f, f )p ⊗ p ⊗ pdp. (38)

Case l = 4
The space M4 is a 25-dimensional space. In order to satisfy condition (I), we

add the mass, momentum and energy to M4 and obtain the space M̃4

span (1, p, ε, εp1 p2 p3, ((m2c2 + |p|2 + (pi )2)((p j )2 − (pk)2))i �= j,i �=k, j �=k,

× (m2c2 + |p|2)2 + 2|p|2(m2c2 + 2|p|2) + (p1 p2)2 + (p1 p3)2 + (p2 p3)2,

((pi )4 − 3(pi p j )2 − 3(pi pk)2 + 3(pi pk)2)i �= j,i �=k, j �=k,

(εp j (m2c2 + |p|2 + (p j )2))1≤ j≤3, (εpi (m2c2 + |p|2 + 3(p j )2))i �= j ,

(pi p j (3(m2c2 + |p|2) + (pi )2))i �= j , (pi p j (m2c2 + |p|2 + (pk)2))i �= j,i �=k, j �=k),

that is an admissible space with degree 30 whereas the space P̃4 = span(1, �p, �p ⊗
�p ⊗ �p ⊗ �p) has dimension 39.

Conclusion

The spaces Ml are strictly included in the spaces P̃l defined by (18). When we
also consider condition (I), we recover the spaces P̃l and M̃l introduced in Sec. 1.
Contrary to the classical case, condition (III) had no consequence since the spaces
we considered were already admissible.

The finite dimensional subspaces of R[ε, p1, p2, p3] that satisfy condi-
tions (I), (II) and (III) are the vector sum of the spaces obtained as above for
l = 1, 2, 3, 4, . . . Hence, the admissible space with maximal degree 1, 2, 3 or 4
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are

maximal dagree = 1 M = span (1, �p),
maximal degree = 2 M = span (1, �p, �p ⊗ �p),
maximal degree = 3 M = span (1, �p, �p ⊗ �p⊗ �p),

M = span (1, �p, �p ⊗ �p, �p ⊗ �p ⊗ �p),
maximal degree = 4 M = M4 ⊕ span (1, �p),

M = span (1, �p, �p ⊗ �p ⊗ �p ⊗ �p),
M = span (1, �p, �p ⊗ �p ⊗ �p, �p ⊗ �p ⊗ �p ⊗ �p),

which have respectively dimension 5, 14, 21, 30, 30, 39 and 55.

3. CLASSICAL LIMIT

The classical limit consists in considering velocities v that are much smaller
than the speed of light c. This amounts to let v/c → 0. The equations should
be rescaled but, for the sake of clarity, we keep our notations and let c → +∞.
From (3), we deduce that

ε = mc2 + m|v|2
2

+ 3m|v|4
8c2

+ O

(
1

c4

)

and p = mv + mv|v|2
2c2

+ O

(
1

c4

)
. (39)

It implies that

f (t, x, p) = 1

m3
fc(t, x, v) + O

(
1

c2

)
and dp = m3dv + O

(
1

c2

)
. (40)

We denote here by fc the distribution function in the classical case.

3.1. System (1, �p)

We consider the classical limit of (26)–(28). With (39) and (40), Eqs. (26)
and (27) become

∂

∂t

∫
R

3
fcdv + ∇x ·

∫
R

3
fcvdv + O

(
1

c2

)
= 0,

∂

∂t

∫
R

3
fcvdv + ∇x ·

∫
R

3
fcv ⊗ vdv + O

(
1

c2

)
= 0.

We thus obtain

∂

∂t

∫
R

3
fcdv + ∇x ·

∫
R

3
fcvdv = 0, (41)

∂

∂t

∫
R

3
fcvdv + ∇x ·

∫
R

3
fcv ⊗ vdv = 0. (42)
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Moreover, Eq. (28) reads

mc2

(
∂

∂t

∫
R

3
fcdv + ∇x ·

∫
R

3
fcvdv

)

+ m

2

(
∂

∂t

∫
R

3
fc|v|2dv + ∇x ·

∫
R

3
fc|v|2vdv

)
+ O

(
1

c2

)
= 0,

which, with (41), leads to

∂

∂t

∫
R

3
fc|v|2dv + ∇x ·

∫
R

3
fc|v|2vdv + O

(
1

c2

)
= 0,

that is,

∂

∂t

∫
R

3
fc|v|2dv + ∇x ·

∫
R

3
fc|v|2vdv = 0.

We finally obtain the following system

∂

∂t

∫
R

3
fcdv + ∇x ·

∫
R

3
fcvdv = 0,

∂

∂t

∫
R

3
fcvdv + ∇x ·

∫
R

3
fcv ⊗ vdv = 0,

∂

∂t

∫
R

3
fc|v|2dv + ∇x ·

∫
R

3
fc|v|2vdv = 0,

that is the equations associated to the moment space span(1, v, |v|2). This space is
invariant under any rotation and translation, and it is an admissible moment space.

3.2. System (1, �p, �p ⊗ �p)

We consider the classical limit of (29)–(33). We pass to the limit c → +∞
in (29)–(31) as we did for (26)–(28). With (39) and (40), Eq. (33) becomes

∂

∂t

∫
R

3
fcv ⊗ v dv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ v dv + O

(
1

c2

)

= 1

m2

∫
R

3
Q R( f, f )p ⊗ p dp.

We still need to pass to the limit in the collision kernel Q R( f, f ). We deduce from
(39) that (8) and (9) read

vM = |v − v∗| + O

(
1

c2

)
and σ = σc + O

(
1

c2

)
,
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where

σc =
(

qq∗
8µ|v − v∗|2πε0

)2 1

sin4(θ/2)
with µ = mm∗

m + m∗
.

Moreover, (40) implies that

f (p�) f (p�
∗) − f (p) f (p∗) = 1

m3m3∗
( fc(v�) fc(v�

∗) − fc(v) fc(v∗)) + O

(
1

c2

)
,

where the velocities v� and v
�
∗ are solutions to the conservation laws of momentum

and energy

mv + m∗v∗ = mv� + m∗v�
∗ and m|v|2 + m∗|v∗|2 = m|v�|2 + m∗|v�

∗|2.
We thus obtain that

Q R( f, f ) = 1

m3
QC ( fc, fc) + O

(
1

c2

)
, (43)

where QC denotes the classical collision kernel

QC ( fc, fc)(t, x, v) =
∫ ∫

S
2×R

3
σc|v − v∗|( fc(v�) fc(v�

∗) − fc(v) fc(v∗))dv∗dω.

From (43), we deduce that (33) reads

∂

∂t

∫
R

3
fcv ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ vdv + O

(
1

c2

)

=
∫

R
3

QC ( fc, fc)v ⊗ vdv + O

(
1

c2

)
.

We finally get

∂

∂t

∫
R

3
fcv ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ vdv =

∫
R

3
QC ( fc, fc)v ⊗ vdv.

Similarly to (28), Eq. (32) becomes

m2c2

(
∂

∂t

∫
R

3
fcvdv + ∇x ·

∫
R

3
fcv ⊗ vdv

)

+ m2

2

(
∂

∂t

∫
R

3
fc|v|2vdv + ∇x ·

∫
R

3
fc|v|2v ⊗ vdv

)

+ O

(
1

c2

)
=

∫
R

3
Q R( f, f )εp dp.

But, ∫
R

3
Q R( f, f )εpdp = m2

2

∫
R

3
QC ( fc, fc)|v|2vdv + O

(
1

c2

)
,
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whence, with (42),

∂

∂t

∫
R

3
fc|v|2vdv + ∇x ·

∫
R

3
fc|v|2v ⊗ vdv + O

(
1

c2

)

=
∫

R
3

QC ( fc, fc)|v|2vdv + O

(
1

c2

)
.

Finally, system (29)–(33) becomes, letting c → +∞,

∂

∂t

∫
R

3
fcdv + ∇x ·

∫
R

3
fcvdv = 0,

∂

∂t

∫
R

3
fcvdv + ∇x ·

∫
R

3
fcv ⊗ vdv = 0,

∂

∂t

∫
R

3
fc|v|2vdv + ∇x ·

∫
R

3
fc|v|2v ⊗ vdv =

∫
R

3
QC ( fc, fc)|v|2vdv,

∂

∂t

∫
R

3
fcv ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ vdv =

∫
R

3
QC ( fc, fc)v ⊗ vdv.

We thus obtain the moment space span (1, v, v ⊗ v, v|v2|), that is the Grad 13-
moment system. The Grad 13-moment system is therefore compatible with the
relativistic system. This space is stable under any rotation and translation. However,
it is not an admissible space (in the sense of Levermore). Here the limit system
has dimension 13 whereas the system (29)–(33) has dimension 14 because the
equation involving |v|2 is obtained twice.

3.3. System (1, �p, �p ⊗ �p ⊗ �p)

We have already passed to the limit in (34)–(36). With (39), (40) and (43),
Eq. (37) and (38) lead to

∂

∂t

∫
R

3
fcv ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ vdv + O

(
1

c2

)

=
∫

R
3

QC ( fc, fc)v ⊗ vdv + O

(
1

c2

)
,

and

∂

∂t

∫
R

3
fcv ⊗ v ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ v ⊗ vdv + O

(
1

c2

)

=
∫

R
3

QC ( fc, fc)v ⊗ v ⊗ vdv + O

(
1

c2

)
.
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Thus, letting c → +∞, we obtain the following equations

∂

∂t

∫
R

3
fcdv + ∇x ·

∫
R

3
fcvdv = 0,

∂

∂t

∫
R

3
fcvdv + ∇x ·

∫
R

3
fcv ⊗ vdv = 0,

∂

∂t

∫
R

3
fcv ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ vdv =

∫
R

3
QC ( fc, fc)v ⊗ vdv,

∂

∂t

∫
R

3
fcv ⊗ v ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ v ⊗ vdv

=
∫

R
3

QC ( fc, fc)v ⊗ v ⊗ vdv,

that is the moment system corresponding to (1, v, v ⊗ v, v ⊗ v ⊗ v). This system
is invariant under any rotation and translation but is not an admissible system (in
the sense of Levermore). This space has dimension 20.

3.4. System (1, �p, �p ⊗ �p, �p ⊗ �p ⊗ �p)

We deduce from the above calculations that passing to the limit in the moment
system associated to (1, �p, �p ⊗ �p, �p ⊗ �p ⊗ �p) leads to

∂

∂t

∫
R

3
fcdv + ∇x ·

∫
R

3
fcvdv = 0,

∂

∂t

∫
R

3
fcvdv + ∇x ·

∫
R

3
fcv ⊗ vdv = 0,

∂

∂t

∫
R

3
fcv ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ vdv =

∫
R

3
QC ( fc, fc)v ⊗ vdv,

∂

∂t

∫
R

3
fcv ⊗ v ⊗ vdv + ∇x ·

∫
R

3
fcv ⊗ v ⊗ v ⊗ vdv

=
∫

R
3

QC ( fc, fc)v ⊗ v ⊗ vdv,

∂

∂t

∫
R

3
fc|v|2v ⊗ vdv + ∇x ·

∫
R

3
fc|v|2v ⊗ v ⊗ vdv

=
∫

R
3

QC ( fc, fc)|v|2v ⊗ vdv,
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that is the moment system corresponding to (1, v, v ⊗ v, v ⊗ v ⊗ v, |v2|v ⊗ v).
This system is invariant under any rotation and translation. Moreover, it is an
admissible system whose dimension is 26.

3.5. System M̃4

The system M̃4 consists of 30 independent moments. Consequently, we do
not write down all the equations and we do not give all the details of the passage
to the limit. The different steps are described below.

• As previously, the moment system (1, p, ε) leads to the moment system
(1, v, |v|2).

• From the set of moments of the form pi p j (3(m2c2 + |p|2) + (pi )2) and
pi p j (m2c2 + |p|2 + (pk)2), we obtain the moments viv j , viv j (v2

i − v2
j )

and viv j (vi − 3vk) for i �= j, k �= i and k �= j .
• Passing to the limit in the set of moments of the form εpi (m2c2 + |p|2 +

(pi )2) and εpi (m2c2 + |p|2 + 3(pk)2), we get the moments |v|2vi and
vi (v2

i − 3v2
k ) for i �= k.

• The moment εp1 p2 p3 leads to the moment v1v2v3.
• The six remaining moments lead to the moments v2

i − v2
j and v4

i + 3v2
j v

2
k −

3v2
i v

2
j − 3v2

i v
2
k , for i �= j, i �= k, and j �= k.

Summarizing, the limit system is the following 29-dimensional space

span
(
1, v, v ⊗ v, v ⊗ v ⊗ v, (viv j

(
v2

i − 3v2
k

))
i �= j,i �=k, j �=k

,

(
v4

i + 3v2
j v

2
k − 3v2

i

(
v2

j + v2
k

))
i �= j,i �=k, j �=k

)
,

which also reads

span(1, v, v ⊗ v, v ⊗ v ⊗ v, v ⊗ v ⊗ v ⊗ v − 6|v|2 I3 ⊗ v ⊗ v/7

+ 3|v|4 I3 ⊗ I3/35),

where T denotes the symmetric part of the tensor T. The obtained space is invariant
under any rotation and any translation but it is non admissible.

3.6. System (1, �p, �p ⊗ �p ⊗ �p ⊗ �p)

Passing to the limit c → +∞ as in the previous sections, we get the moment
space

span (1, v, v ⊗ v, v ⊗ v ⊗ v, v ⊗ v ⊗ v ⊗ v),

whose dimension is 35. This space is stable under any rotation and translation and
it is admissible.
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3.7. System (1, �p, �p ⊗ �p ⊗ �p, �p ⊗ �p ⊗ �p ⊗ �p)

Letting c → +∞, we get the moment space

span (1, v, v ⊗ v, v ⊗ v ⊗ v, v ⊗ v ⊗ v ⊗ v, |v|2v ⊗ v ⊗ v).

This space is non admissible and has dimension 45. It is invariant under any
rotation and any translation.

3.8. Conclusion

Passing to the limit c → +∞ on admissible relativistic systems, we
have obtained admissible classical spaces as (1, v, |v|2) and (1, v, v ⊗ v, v ⊗
v ⊗ v, |v|2v ⊗ v)), but also non admissible spaces as (1, v, v ⊗ v, v|v|2) and
(1, v, v ⊗ v, v ⊗ v ⊗ v). Let us summarize the obtained limit systems:

Relativistic system Limit system
(1, �p) (1, v, |v|2)
(1, �p, �p ⊗ �p) (1, v, v ⊗ v, |v|2v)
(1, �p, �p ⊗ �p ⊗ �p) (1, v, v ⊗ v, v ⊗ v ⊗ v)
(1, �p, �p ⊗ �p, �p ⊗ �p ⊗ �p) (1, v, v ⊗ v, v ⊗ v ⊗ v, |v|2v ⊗ v)
M4 ⊕ span(1, �p) (1, v, v ⊗ v, v ⊗ v ⊗ v,

v ⊗ v ⊗ v ⊗ v

−6|v|2/7I3 ⊗ v ⊗ v

+3|v|4 I3 ⊗ I3/35)
(1, �p, �p ⊗ �p ⊗ �p ⊗ �p) (1, v, v ⊗ v, v ⊗ v ⊗ v, v ⊗ v ⊗ v ⊗ v)
(1, �p, �p ⊗ �p ⊗ �p, �p ⊗ �p ⊗ �p ⊗ �p) (1, v, v ⊗ v, v ⊗ v ⊗ v,

v ⊗ v ⊗ v ⊗ v, |v|2v ⊗ v ⊗ v)
By letting c → +∞ in the relativistic moment spaces, we do not recover all
the classical moment spaces, for instance, we did not get (1, v, v ⊗ v). Since
classical mechanics is considered as an approximation of relativistic mechanics
as c → +∞, it could be sensible to choose as moment spaces in the classical case
only the admissible moment spaces that can be obtained as a limit of relativistic
ones.

4. THE ULTRA-RELATIVISTIC CASE

The ultra-relativistic limit corresponds to the case when the total energy ε of
a particle is much larger than its rest energy mc2. There are two possible cases of
ultra-relativistic gases: either we let the mass m becomes very small or we let the
temperature T becomes very large. We only consider the first limit here. As for
the classical limit, the equations should be rescaled but we do not want to get the
reader confused with non necessary details. Consequently, we keep our notations
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and let m tend to 0. Formulas (4) read

ε = c|p| + O(m2) and v = c
p

|p| + O(m2). (44)

We deduce then that (8) and (9) read

vM = vM ur + O(m2) and σ = σ ur + O(m2),

where

vMur = |vrel |
(

1 − p · p∗
|p||p∗|

)
and σur =

(
qq∗

4πε0

)2 1 + cos4(θ/2)

8c2|p|2 sin4(θ/2)
.

We thus obtain that

Q R( f, f ) = Qur ( fur , fur ) + O(m2), (45)

where fur denotes the ultra-relativistic distribution function and Qur the ultra-
relativistic collision kernel

Qur ( fur , fur )(t, x, p) =
∫ ∫

S
2×R

3
vM urσur ( f ur (p�) fur (p�

∗) − fur (p) fur (p∗))

dp∗dω.

System (1, �p)

With (44), Eqs. (26)–(28) lead to

∂

∂t

∫
R

3
fur dp + c∇x ·

∫
R

3
fur

p

|p|dp = 0, (46)

∂

∂t

∫
R

3
fur pdp + c∇x ·

∫
R

3
fur

p

|p| ⊗ pdp = 0, (47)

∂

∂t

∫
R

3
fur |p|dp + c∇x ·

∫
R

3
fur pdp = 0, (48)

that is the 5-moment system associated to (1, p, |p|).

System (1, �p, �p ⊗ �p)

By (44) and (45), Eqs. (29)–(33) read

∂

∂t

∫
R

3
fur dp + c∇x ·

∫
R

3
fur

p

|p|dp = 0,

∂

∂t

∫
R

3
fur pdp + c∇x ·

∫
R

3
fur

p

|p| ⊗ pdp = 0,
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∂

∂t

∫
R

3
fur |p|dp + c∇x ·

∫
R

3
fur pdp = 0,

∂

∂t

∫
R

3
fur |p|pdp + c∇x ·

∫
R

3
fur p ⊗ pdp =

∫
R

3
Qur ( fur , fur )|p|pdp,

∂

∂t

∫
R

3
fur p ⊗ pdp + c∇x ·

∫
R

3
fur

p

|p| ⊗ p ⊗ pdp =
∫

R
3

Qur ( fur , fur )p ⊗ pdp,

We thus obtain the 14-dimensional system (1, p, |p|, p|p|, p ⊗ p).

System (1, �p, �p ⊗ �p ⊗ �p)

In the ultra-relativistic case, Eqs. (34)–(38) become

∂

∂t

∫
R

3
fur dp + c∇x ·

∫
R

3
fur

p

|p|dp = 0,

∂

∂t

∫
R

3
fur pdp + c∇x ·

∫
R

3
fur

p ⊗ p

|p| dp = 0,

∂

∂t

∫
R

3
fur |p|dp + c∇x ·

∫
R

3
fur pdp = 0,

∂

∂t

∫
R

3
fur |p|p ⊗ pdp + c∇x ·

∫
R

3
fur p ⊗ p ⊗ pdp

=
∫

R
3

Qur ( fur , fur )|p|p ⊗ pdp,

∂

∂t

∫
R

3
fur p ⊗ p ⊗ pdp + c∇x ·

∫
R

3
fur

p ⊗ p ⊗ p ⊗ p

|p| dp

=
∫

R
3

Qur ( fur , fur )p ⊗ p ⊗ pdp.

We thus obtain the system (1, p, |p|, |p|p ⊗ p, p ⊗ p ⊗ p), whose dimension
is 21.

System (1, �p, �p ⊗ �p, �p ⊗ �p ⊗ �p)

Letting m → 0, we obtain the moment space

span (1, p, |p|, |p|p, p ⊗ p, |p|p ⊗ p, p ⊗ p ⊗ p),

whose dimension is 30.
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System M̃4

In the ultra-relativistic case, the space M̃4 becomes

span(1, p, |p|, |p|p1 p2 p3, 3|p|4 + (p1 p2)2 + (p2 p3)2 + (p1 p3)2, ((p j )3 pk) j �=k,

((pi )4 − 3(pi p j )2 − 3(pi pk)2 + 3(p j pk)2)i �= j,i �=k, j �=k, , (pi p j (pk)2)i �= j,i �=k, j �=k

((|p|2 + (pi )2)((p j )2 − (pk)2))i �= j,i �=k, j �=k,(|p|(p j )3)1≤ j≤3,(|p|p j (pk)2) j �=k).

System (1, �p, �p ⊗ �p ⊗ �p ⊗ �p)

Passing to the limit m → 0, we get the moment space

span(1, p, |p|, |p|p, p ⊗ p, |p|p ⊗ p ⊗ p, p ⊗ p ⊗ p ⊗ p),

whose dimension is 39.

System (1, �p, �p ⊗ �p ⊗ �p, �p ⊗ �p ⊗ �p ⊗ �p)

In the ultra-relativistic case, the moment space (1, �p, �p ⊗ �p ⊗ �p, �p ⊗ �p ⊗
�p ⊗ �p) leads to

span(1, p, |p|, |p|p, p ⊗ p, |p|p ⊗ p, p ⊗ p ⊗ p, |p|p ⊗ p ⊗ p, p ⊗ p ⊗ p ⊗ p).

This space has dimension 55.

5. MOMENT CLOSURE PROBLEM

5.1. The Maximum Entropy Principle

Up to now, we have determined the moment spaces M that could be used to
derive moment system, as well in the relativistic case than in the ultra-relativistic
case. The moment system is then obtained by multiplying the Boltzmann equation
by a basis m = (mi )1≤i≤N of M and integrating with respect to the momentum
variable. However, the obtained moment system is not closed unless a distribution
function is specified. A usual strategy consists in closing this system using the
function that solves the entropy minimization problem. Given M ∈ R

N , we close
thanks to the distribution function f that realizes the following minimum

min

{
S( f ) =

∫
R

3
( f ln f − f ) dp,

∫
R

3
f (p)m(p, ε(p)) dp = M

}
. (49)

It is of course not warranted that this problem has a solution. Indeed, the vector
M ∈ R

N needs to satisfy some constraints in order that there exists a distribution
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function f such that ∫
R

3
f (p)m(p, ε(p))dp = M. (50)

Formally, the method of the Lagrange multipliers imply that the solution f of the
entropy minimization problem (49) satisfies

f (t, x, p) = exp(α(t, x) · m(p, ε(p))),

where the coefficient α ∈ R
N is determined by the constraint (50). Consequently,

the main point is to know whether there exist exponential densities that satisfy (50).
This problem has been answered in the classical case by Junk(14) and Schneider,(25)

who assumed that there exists one moment of the basis that grows faster than the
others at infinity. This assumption is fulfilled neither by the relativistic moment
spaces nor by the ultra-relativistic moment spaces. It would be interesting to
see if the results of Junk and Schneider could however be extended to these
cases. Of course, the ultra-relativistic case should be easier to handle because
the corresponding energy ε = c|p| is much simpler than the relativistic one.
Consequently, some calculations might be explicit. This problem is not considered
herein.

In the relativistic and ultra-relativistic cases, the moment realizability prob-
lem has already been solved for the moments (1, p, ε(p)) and (1, p, ε(p)). Con-
sequently, for these moment systems, the closure by the entropy minimization
principle can be carried out. We summarize the main ideas below.

5.2. The Relativistic Case

We proceed here below to the closure of the 5 moment system (26)–(28).
By Ref. 10, Theorem 3.15.3 and Ref. 8, Theorem 2.1, there exists a solution to
the problem of minimizing the entropy at fixed mass n, momentum P and energy
W if and only if n, P and W satisfy m2c2n2 + |P|2 ≤ W 2/c2 and this solution is
uniquely determined. This solution is the relativistic Maxwellian of the form (11)
that satisfies

n =
∫

R
3
M(p) dp, P =

∫
R

3
M(p)p dp and W =

∫
R

3
M(p)ε(p)dp.

The closure of the system (26)–(28) thanks to this Maxwellian enables us
to compute the fluxes

∫
R

3 f vdp and
∫

R
3 f v ⊗ pdp in terms of n, P and W. We

obtain the relativistic hydrodynamic equations (see Refs. 17 and 19)

∂

∂t

⎛
⎝ n

P
W

⎞
⎠ + ∇x ·

⎛
⎝ nu

P ⊗ u + Pγ −1
u I d

W u + Pγ −1
u u

⎞
⎠ = 0.
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where P, W and P are related to T, u and n by

P = nkT, W = γu

(
ne0(T ) + |u|2

c2
P

)
and P = γu

u

c2
(ne0(T ) + P).

Here, we denote respectively by u,P, T and e0 the velocity, the stress, the tem-
perature and the proper internal energy of the fluid. The constant k is Boltzmann’s
constant.

5.3. The Ultra-Relativistic Case

We close here the system (46)–(48) thanks to the Maxwellian that minimizes
the entropy at fixed mass ñ, momentum P̃ and energy W̃ . The proof of [Ref. 8,
Theorem 2.1] can be extended to the ultra-relativistic case and there exists a
solution to this problem if and only if P̃ and W̃ satisfy |P̃| ≤ W̃/c, this solution
being uniquely determined. This solution is the ultra-relativistic Maxwellian of
the form

M̃(p) = A exp(−β0|p| + β · p) with A ∈ R+, β0 ∈ R+, β ∈ R
3,

that satisfies

ñ =
∫

R
3

M̃(p)dp, P̃ =
∫

R
3
M̃(p)p dp and W̃ = c

∫
R

3
M̃(p)|p|dp.

We obtain the ultra-relativistic hydrodynamic equations (see Ref. 16)

∂

∂t

⎛
⎝ ñ

P̃
W̃

⎞
⎠ + ∇x ·

⎛
⎝ ñũ

P̃ ⊗ ũ + P̃γ −1
ũ I d

W̃ ũ + P̃γ −1
ũ ũ

⎞
⎠ = 0,

where P̃, W̃ and P̃ are related to T̃ , ũ and ñ by

P̃ = ñkT̃ , W̃ = γũ

(
3 + |ũ|2

c2

)
P̃ and P̃ = 4γũ

ũ

c2
P̃.

Here, we denote respectively by ũ, P̃ and T̃ the velocity, the stress and the tem-
perature of the fluid. The constant k is Boltzmann’s constant.

6. PROOF OF THEOREM 1

This section is based on the representation theory of Lie groups and Lie
algebras. Therefore, we refer to Ref. 9, and 13 for further information. The group
SO(1, 3)e is a matrix Lie group. We point out that Lie algebras are essential for
the study of matrix Lie groups because they have the advantage of being vector
spaces and thus allow the use of linear algebra tools. The Lie algebra associated
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to SO(1, 3)e reads

soR(1, 3) = {X ∈ M(4, R); gX T + Xg = 0},
where X T denotes the matrix transpose of X. Let soC(1,3) be the complexification
of soR(1,3) (see Ref. 13, Definition 2.43),

soC(1, 3) = {X ∈ M(4, C); gX T + Xg = 0}.
We denote by Cn[y0, y1, y2, y3] the set of complex homogeneous polynomials

with degree n and consider the following representation of SO(1, 3)e:

ϕ̃ : SO(1, 3)e −→ GL(Cn[y0, y1, y2, y3])

L �−→ {R(y0, y1, y2, y3) �−→ R(L−1(y0, y1, y2, y3))}
By (Ref. 13, Proposition 4.4), the representation (ϕ̃, Cn[y0, y1, y2, y3]) of
SO(1, 3)e induces a unique representation (�, Cn[y0, y1, y2, y3]) of soR (1,3),
which is defined by

�(Z ) = d

dt
ϕ̃(et Z )

∣∣∣∣
t=0

, Z ∈ soR(1, 3).

By (Ref. 13, Proposition 4.6), this finite dimensional complex representa-
tion of soR(1,3) may be uniquely extended to a complex representation
(�̃, Cn[y0, y1, y2, y3]) of soC (1, 3), given by

�̃(Z ) = �(Z1) + i�(Z2), Z = Z1 + i Z2 ∈ soC(1, 3), Z1, Z2 ∈ soR(1, 3).

The representation theory of Lie algebras implies, thanks to the highest weight
theory, that the following theorem holds:

Theorem 4. The representation (�̃, Cn[y0, y1, y2, y3]) of soC (1,3) is not irre-
ducible. More precisely, we have the following decomposition:

Cn[y0, y1, y2, y3] =
[n/2]⊕
j=0

�
(n)
n−2 j,0, (51)

where �
(n)
n−2 j,0 is a subspace of Cn[y0, y1, y2, y3] generated by

((
y2

0 − y2
1 − y2

2 − y2
3

) j
min(l,n−2 j−k)∑
m=max(l−k,0)

(n − 2 j − k)!

(n − 2 j − k − m)!

k!

(k − l + m)!

(
l

m

)

(y1 − iy2)n−2 j−k−m(y0 + y3)m(y0 − y3)k−l+m(y1 + iy2)l−m

)
0≤k,l≤n−2 j

(52)

Each representation (�̃|�(n)
n−2 j,0

, �
(n)
n−2 j,0) is irreducible.
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It then follows easily that

Theorem 5. The representation (ϕ̃, Cn[y0, y1, y2, y3]) of SO(1, 3)e is not irre-
ducible. More precisely, (51) holds and each (ϕ̃|�(n)

n−2 j,0
, �

(n)
n−2 j,0) is an irreducible

representation.

Proof: We have to show that each �
(n)
n−2 j,0 is stable under SO(1, 3)e. Since

SO(1, 3)e, is generated by the matrices

R1(t) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos t sin t

0 0 − sin t cos t

⎞
⎟⎟⎟⎠ , R2(t) =

⎛
⎜⎜⎝

1 0 0 0
0 cos t 0 sin t
0 0 1 0
0 − sin t 0 cos t

⎞
⎟⎟⎠ ,

R3(t) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos t sin t 0

0 − sin t cos t 0

0 0 0 1

⎞
⎟⎟⎟⎠ , L1(t) =

⎛
⎜⎜⎜⎝

cosh t sinh t 0 0

sinh t cosh t 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

L2(t) =

⎛
⎜⎜⎜⎝

cosh t 0 sinh t 0

0 1 0 0

sinh t 0 cosh t 0

0 0 0 0

⎞
⎟⎟⎟⎠ , L3(t) =

⎛
⎜⎜⎜⎝

cosh t 0 0 sinh t

0 1 0 0

0 0 1 0

sinh t 0 0 cosh t

⎞
⎟⎟⎟⎠ ,

for t ∈ R, it suffices to show that the vector space �
(n)
n−2 j,0 is stable under any

ϕ̃(Rk(t)) and ϕ̃(Lk(t)), for every t ∈ R. The space soC (1, 3) is generated by

R1 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠ ,R2 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠ ,R3 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

(53)

L1 =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,L2 =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,L3 =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎟⎟⎠ . (54)
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Consequently, each �
(n)
n−2 j,0 is stable under �(Rk) and �(Lk), 1 ≤ k ≤ 3. But, we

have

Rk(t) = exp (t Rk) and Lk(t) = exp (t Lk), t ∈ R,

and, by (Ref. 13, Proposition 4.4),

ϕ̃(eX ) = e�(X ), X ∈ soR(1, 3).

We thus deduce that �
(n)
n−2 j,0 is stable under any ϕ̃(Rk(t)) and ϕ̃(Lk(t)), for every

t ∈ R.
Since SO(1, 3)e is a connected matrix Lie group, the representation

(ϕ̃|�(n)
n−2 j,0

, �
(n)
n−2 j,0) of SO(1, 3)e is irreducible (by Ref. 13, Proposition 4.5 and

Ref. 13, Proposition 4.6). �

It remains now to consider the case of real polynomials. We denote by
Rn[y0, y1, y2, y3] the set of real homogeneous polynomials with degree n and
consider the representation (ϕ|Rn [y0,y1,y2,y3], Rn[y0, y1, y2, y3]) of SO(1, 3)e, where
ϕ is defined by (19).

Theorem 6. The representation (ϕ)Rn [y0,y1,y2,y3], Rn[y0, y1, y2, y3]| of SO(1, 3)e

is not irreducible. We have the following decomposition:

Rn[y0, y1, y2, y3] =
[n/2]⊕
j=0

�̃
(n)
n−2 j,0, (55)

where the space �̃
(n)
n−2 j,0 is generated by the real parts and the imaginary parts of

(
y2

0 − y2
1 − y2

2 − y2
3

) j
q∑

m=max(q−ro)

(n − 2 j − r )!r !

(n − 2 j − r − m)!(r − q + m)!

(
q
m

)

(y0 + y3)m(y0 − y3)r−q+m(y1 + iy2)n−2 j−r−m(y1 − iy2)q−m, (56)

for q, r ∈ [[0, n − 2 j]], q + r ≤ n − 2 j . The subrepresentations (ϕ|�̃(n)
n−2 j,0

, �̃
(n)
n−2 j,0)

are irreducible.

Proof: Let (q, r ) ∈ N
2 such that q + r < n − 2 j . Choosing (k, l) = (r, q) and

(k, l) = (n − 2j − q, n − 2j − r ), we deduce that the complex basis (52) can be

replaced by the real parts and imaginary parts of (56). We denote by �̃
(n)
n−2 j,0 the

real vector space generated by the real parts and the imaginary parts of (56). It
follows from (51) that (55) holds.

We still have to check that each �̃
(n)
n−2 j,0 is stable under SO(1, 3)e. By

Theorem 5, we already know that the complexification �
(n)
n−2 j,0 of �̃

(n)
n−2 j,0 is stable
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under SO(1, 3)e. Since the proper Lorentz group SO(1, 3)e is composed of real
matrices, we deduce that the real vector space �̃

(n)
n−2 j,0 is stable under SO(1, 3)e.

Each representation (ϕ|�̃(n)
n−2 j,0

, �̃
(n)
n−2 j,0) of SO(1, 3)e is irreducible. Indeed, if

there is a subspace V of �̃
(n)
n−2 j,0 stable under SO(1, 3)e, then the complexification

V + iV of V is a subspace of �
(n)
n−2 j,0 stable under SO(1, 3)e. Since �

(n)
n−2 j,0 is

irreducible, we deduce that either V = {0}, or V = �̃
(n)
n−2 j,0. �

We now consider the representation (19) of SO(1, 3)e and we prove
Theorem 1. It follows from (55) that we have the following decomposition of
(ϕ,Pn) as a direct sum of irreducible representations

Pn =
n⊕

k=0

[k/2]⊕
j=0

�̃
(k)
k−2 j,0, (57)

where �̃
(k)
k−2 j,0 is the real vector space given by Theorem 6. The Schur Lemma (see

Ref. 13, Theorem 4.26) implies that this decomposition as a direct sum is unique
up to an isomorphism. Its proof follows the same lines as (Ref. 20, Proposition
1.2) for modules. We now need the following lemma:

Lemma 7. Let P̂n = ⊕n
k=0Ck[y0, y1, y2, y3]. We consider the following repre-

sentation:

ϕ̂ : SO(1, 3)e −→ GL(P̂n)
L �−→ {R(y0, y1, y2, y3) �−→ R(L−1(y0, y1, y2, y3))}

Denote by (�̂, P̂n) the associated representation of soC(1, 3). A non-zero poly-
nomial Q ∈ P̂n is said to be a highest weight vector associated to the weight
(n − 2j, 0) of the representation (�̂, P̂n) of soC(1, 3) if

�̂(D1)Q = (n − 2 j)Q, �̂(D2)Q = 0, �̂(C1)Q = 0, �̂(C3)Q = 0,

(58)
with D1 = i R3, D2 = L3, C1 = R1 + L2 + i(R2 + L1) and C3 = R1 − L2 +
i(R2 − L1), where the matrices R j and L j are defined by (53) and (54).

A polynomial Q ∈ P̂n satisfies (58) if and only if

Q(y0, y1, y2, y3) = (y1 − iy2)n−2 j
j∑

k=0

λk

(
y2

0 − y2
1 − y2

2 − y2
3

) j−k
(59)

with λk ∈ C for k = 0, . . . , j .
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Proof: Let us assume that Q ∈ P̂n satisfies (58). As previously, by (Ref. 13,
Proposition 4.4) and (Ref.13, Proposition 4.6), we have

�̂(Z ) = d

dt
ϕ̃(et Z1 )

∣∣∣∣
t=0

+ i
d

dt
ϕ̃(et Z2 )

∣∣∣∣
t=0

, Z = Z1 + i Z2, Z1, Z2 ∈ soR(1, 3).

The change of variables Y = P X where

P =

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 i −i 0

1 0 0 −1

⎞
⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎝

y0

y1

y2

y3

⎞
⎟⎟⎠ , X =

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ ,

diagonalizes both D1 and D2 and implies that the coefficients of

Q̃(x0, x1, x2, x3) =
∑

k0+k1+k2+k3≤n

ak0, k1, k2, k3 xk0
0 + xk1

1 + xk2
2 + xk3

3 ,

where Q̃(X ) = Q(P X ), satisfy

(n − 2 j − k1 + k2)ak0,k1,k2,k3 = 0, (60)

(k3 − k0)ak0,k1,k2,k3 = 0, (61)

(k2 + 1)ak0−1,k1,k2+1,k3 + (k3 + 1)ak0,k1−1,k2,k3+1 = 0, k0 ≥ 1, k1 ≥ 1, (62)

(k0 + 1)ak0+1,k1−1,k2,k3 + (k2 + 1)ak0,k1,k2+1,k3−1 = 0, k1 ≥ 1, k3 ≥ 1, (63)

for every (k0, k1, k2, k3) ∈ N
4, k0 + k1 + k2 + k3 ≤ n. We thus deduce that

Q̃(x0, x1, x2, x3) =
j∑

l=0

j−l∑
m=0

am,n− j−m−l, j−m−l,m xm
0 xn− j−m−l

1 x j−m−l
2 xm

3 .

Let l0 ∈ [[0, j]] and m0 ∈ [[0, j − l]] be such that am0,n− j−m0−l0, j−m0−l0,m0 �= 0.
Eqs. (62) and (63) imply that

am,n− j−m−l, j−m−l,m = (−1) j−m−l

(
j − l
m

)
am0,n− j−m0−l0, j−m0−l0,m0 (−1) j−m0−l0(

j − l0

m0

) ,

for each l ∈ [[0, j]] and m ∈ [[0, j − l]]. Consequently,

Q̃(x0, x1, x2, x3) = xn−2 j
1

j∑
l=0

λl(x0x3 − x1x2) j−l ,

with λl ∈ C for l = 0, . . . , j . �
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Proof of Theorem 1. Let W be an irreducible subrepresentation of (ϕ,Pn).
Let us recall that, by (Ref. 13, Proposition 4.33), for every finite dimensional

representation (�, V ) of a Lie group that decomposes as a direct sum of irreducible
representations, every stable subspace of V also decomposes as a direct sum of
irreducible representations and, given a stable subspace U of V, there is a stable
subspace Ũ such that V = U ⊕ Ũ .

Case 1. There exists k ∈ [[0, n]] such that W ⊂ Rk[y0, y1, y2, y3].
It follows from (55) and (Ref. 13, Proposition 4.33) that there exists a stable

subspace W ′ ⊂ Rk[y0, y1, y2, y3] such that Rk[y0, y1, y2, y3] = W ⊕ W ′. Then,
(Ref. 13, Proposition 4.33) implies that W ′ = ⊕α�α and, thus,

Rk[y0, y1, y2, y3] = W
⊕

⊕α�α.

By uniqueness of (55), there exists j ∈ [[0, [k/2] ]] such that W � �̃
(k)
k−2 j,0. Con-

sidering the complexification WC = W + iW of W and extending the action of
SO(1, 3)e on WC to an action of soC (1, 3), we deduce from (Ref. 13, Proposition
7.15) that WC contains a unique highest weight vector Qk−2 j associated to the
weight (k − 2 j, 0). Lemma 7 implies the existence of λ ∈ C such that

Qk−2 j (y0, y1, y2, y3) = λ(y1 − iy2)k−2 j
(
y2

0 − y2
1 − y2

2 − y2
3

) j
.

By (Ref. 13, Proposition 7.18), since WC is a complex irreducible repre-
sentation, WC is generated by the iterated action of �̂(C2) and �̂(C4) on
Qk−2 j , with C2 = R2 + L1 + i(R1 + L2) and C4 = R2 − L1 + i(R1 − L2). Con-

sequently, WC = �
(k)
k−2 j,0 and W = �̃

(k)
k−2 j,0.

Case 2. There is no k such that W is included in Rk[y0, y1, y2, y3].
By (57) and uniqueness of this decomposition, we deduce, as previously, that

there exists j ∈ [[0, [n/2] ]] such that W � �n−2 j,0. Considering the complexifi-
cation WC = W + iW of W and extending the action of SO(1, 3)e on WC to an
action of soC(1,3), we deduce that WC contains a highest weight vector Qn−2 j

associated to the weight (n − 2 j, 0). Lemma 7 implies the existence of constants
λk ∈ C for k = 0, . . . , j such that

Qη−2 j (y0, y1, y2, y3) = (y1 − iy2)n−2 j
j∑

k=0

λk

(
y2

0 − y2
1 − y2

2 − y2
3

) j−k
.

As previously, WC is generated by the iterated action of �̂(C2) and �̂(C4) on
Qn−2 j . Consequently, WC is the complex vector space generated by(

j∑
k=0

λk

(
y2

0 − y2
1 − y2

2 − y2
3

) j−k
min(l,n−2 j−m)∑
r=max(l−m,0)

(n − 2 j − m)!

(n − 2 j − m − r )!

m!

(m − l + r )!

(
l

r

)

(y1 − iy2)n−2 j−m−r (y0 + y3)r (y0 − y3)m−l+r (y1 + iy2)l−r
)

0≤l,m≤n−2 j
. (64)
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For l = 0 and m = n − 2 j , we deduce that

j∑
k=0

λk

(
y2

0 − y2
1 − y2

2 − y2
3

) j−k
(y0 − y3)n−2 j

belongs to WC. The coefficients λk may not be all equal to 0. Without loss of
generality, we may assume that there exists k ∈ N such that R(λk) is non-zero. (If
not, it suffices to replace λk with iλk). We obtain that

j∑
k=0

R(λk)
(
y2

0 − y2
1 − y2

2 − y2
3

) j−k
(y0 − y3)n−2 j (65)

is non-zero. By definition of WC, the polynomial (65) belongs to WC. Applying
n − 2 j times �̂(C1) to (65) leads to

j∑
k=0

R(λk)
(
y2

0 − y2
1 − y2

2 − y2
3

) j−k
(y1 − iy2)n−2 j . (66)

But WC is stable under �̂(C1), thus the polynomial (66) belongs to WC. By
Lemma 7, the polynomial (66) is a highest weight vector associated to the weight
(n − 2 j, 0). By (Ref. 13, Proposition 7.15), WC contains, up to a constant, a
unique highest weight vector associated to the weight (n − 2 j, 0). Consequently,
the coefficients λk of (64) are real. Finally, we deduce that W is the real vector
space generated by the real parts and the imaginary parts of (20) with λk ∈ R for
k = 0, . . . , j .

APPENDIX: REPRESENTATION THEORY IN THE CLASSICAL CASE

The restrictions imposed on moment systems in order to satisfy the Galilean
invariance have already been studied in Ref. 15 and 24. We show here how the
previous results may be extended to the classical case. Indeed, thanks to the
representation theory of Lie groups and Lie algebras, we can determine the finite
dimensional subspace of R[v1, v2, v3] that are stable under any rotation of SO(3).
We consider the following action of SO(3) on the subspace Pn composed of the
polynomials of R[y1, y2, y3] with total degree less or equal to n.

ϕ : SO(3) −→ GL(Pn)

L �−→ {R(y1, y2, y3) �→ R(L−1(y1, y2, y3))} (67)

We first consider the restriction of ϕ to Rn[y1, y2, y3], the set of real homo-
geneous polynomials with degree n. The representation theory of Lie groups and
Lie algebras then implies that
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Theorem 8. The representation (ϕ|Rn [y1,y2,y3], Rn[y1, y2, y3]) of SO(3) is not
irreducible. We have the following decomposition:

Rn[y1, y2, y3] =
[n/2]⊕
j=0

�
(n)
2n−4 j , (68)

where the space �
(n)
2n−4 j is generated by the real parts and the imaginary parts of

(
y2

1 + y2
2 + y2

3

) j
min(l,n−2 j)∑
m=[(l+1)/2]

(−1)m+l(n − 2 j)!l!

(n − 2 j − m)!(l − m)!(2m − l)!2n−2 j+l−2m

y2m−l
1 (y2 − iy3)n−2 j−m(y2 + iy3)l−m, (69)

for l ∈ [[0, 2n − 4 j]]. The subrepresentations (ϕ|�(n)
2n−4 j

, �
(n)
2n−4 j ) are irreducible.

The proof of Theorem 8 follows the same lines as the proof of Theorem 6. As
we deduced Theorem 1 from Theorem 6, we deduce the following theorem from
Theorem 8.

Theorem 9. A space W is an irreducible subrepresentation of (ϕ,Pn) if and
only if there exist j ∈ [[0, [n/2]]] and some real numbers (λk)0≤k≤ j such that W is
generated by the real parts and the imaginary parts of

j∑
k=0

λk

(
y2

1 + y2
2 + y2

3

)k
min(l,n−2 j)∑
m=[(l+1)/2]

(−1)m+l(n − 2 j)!l!

(n − 2 j − m)!(l − m)!(2m − l)!2n−2 j+l−2m

y2m−l
1 (y2 − iy3)n−2 j−m(y2 + iy3)l−m, (70)

for l ∈ [[0, 2n − 4 j]].

This theorem describes all the irreducible representations of (ϕ,Pn). We then
obtain all the finite dimensional subspaces of R[v1, v2, v3] that are stable under
any rotation. We have the following proposition.

Proposition 10. For every r ∈ N, j ∈ [[0, [r/2]]], let Tr, j denote the vector space
generated by the real parts and the imaginary parts of

j∑
k=0

λk |v|2k
min(l,r−2 j)∑
m=[(l+1)/2]

(−1)m+l(r − 2 j)!l!

(r − 2 j − m)!(l − m)!(2m − l)!2r−2 j+l−2m

v2m−l
1 (v2 − iv3)r−2 j−m(v2 + iv3)l−m,

for l ∈ [[0, 2r − 4 j]]. Each Tr, j is stable under any rotation.
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Moreover, a finite dimensional subspace T of R[v1, v2, v3] is stable under any
rotation if and only if there exist N ∈ N and some rk ∈ N and jk ∈ [[0, [rk/2]]], k =
1, . . . , N such that T is the vector sum of the Trk , jk , k = 1, . . . , N.

Let us now show that, for each r ∈ N, the spaces Tr,0 are generated by the
components of some tensors.

Theorem 11. Let l ∈ N. For any tensor T of order l, we denote by T the symmetric
part of T, that is the tensor whose components are

T
j1,..., jl = 1

l!

∑
σ∈�l

T jσ (1),..., jσ (l) , ( j1, . . . , jl ) ∈ [[1, 3]]l

where �l denotes the symmetric group of order l.
Then, the vector space Tr,0 given by Proposition 10 is generated by the

components of the tensor Sr (v) defined by

Sr (v) = Tr (v) +
[r/2]∑
k=1

(−1)kr !(r − 1)!(2r − 2k)!

2(r − 2k)!k!(r − k)!(2r − 1)!
|v|2k I3 ⊗ . . . ⊗ I3︸ ︷︷ ︸

k times

⊗Tr−2k(v),

where Tr (v) = ⊗rv and I3 is the identity matrix of order 3.

We now write down the moment spaces that arise in (68) for n = 2, 3, 4.
Since we look here for moment spaces that are compatible with the Galilean
invariance, we also consider the stability under the translations. Moreover, we are
only interested in moment spaces that generalize the fluid dynamic approximation
and thus contain the mass 1, the velocity v and the energy |v|2.

Case n = 2
By Theorem 8, we have

R2[v1, v2, v3] = �
(2)
4 ⊕ �

(2)
0 ,

with �
(2)
0 = span (|v|2) and

�
(2)
4 = span

(
(viv j )i �= j , v

2
1 − v2

3, v
2
2 − v2

3

)
.

We add the mass and the velocity to �
(2)
0 and obtain the moment space span

(1, v, |v|2).

The space �
(2)
4 is a 5-dimensional space. Adding 1, v and |v|2, we obtain the

10-dimensional space span (1, v, v ⊗ v) which is stable under any rotation and
any translation.
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Case n = 3
We infer from (68) that

R3[v1, v2, v3] = �
(3)
6 ⊕ �

(3)
2 ,

where �
(3)
2 = span (v|v|2) and

�
(3)
6 = span

(
v1v2v3,

(
vi (v

2
i − 3v2

j )
)

i �= j

)
.

The space �
(3)
2 is a 3-dimensional space. Adding 1, v and |v|2, we obtain the

8-dimensional space span (1, v, |v|2, v|v|2) which is stable under any rotation but
not under the translations. In order to make it stable under any translation, we add
v ⊗ v and obtain the Grad 13-moment system

span
(
1, v, v ⊗ v, v|v|2).

The space �
(3)
6 is a 7-dimensional space. Adding 1, v and |v|2, we obtain the

12-dimensional space

span
(
1, v, |v|2, v1v2v3,

(
vi (v

2
i − 3v2

j

))
i �= j

).

This space is not stable under the translations. Consequently, we add v ⊗ v and
get

span (1, v, v ⊗ v, v1v2v3, (vi (v
2
i − 3v2

j ))i �= j ),

which is stable under any rotation and under any translations. This space has
dimension 17. We can also add v ⊗ v ⊗ v and obtain the system

span (1, v, v ⊗ v, v ⊗ v ⊗ v),

which has dimension 20.

Case n = 4
By (68), we have

R4[v1, v2, v3] = �
(4)
8 ⊕ �

(4)
4 ⊕ �

(4)
0 ,

where �
(4)
0 =span (|v|4),

�
(4)
4 = |v|2span

(
(viv j )i �= j , v

2
1 − v2

3, v
2
2 − v2

3

)
,

and

�
(4)
8 = span

((
viv j (v

2
i − 3v2

k

))
i �= j,i �=k, j �=k

,

× (
v4

i + 3v2
j v

2
k − 3v2

i

(
v2

j + v2
k

))
i �= j,i �=k, j �=k

)
.
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The space �
(4)
0 is a 1-dimensional space. Adding 1, v and |v|2, we obtain the

6-dimensional space span (1, v, |v|2, |v|4) which is stable under any rotation but
not under the translations. In order to make it stable under any translation, we add
v ⊗ v and v|v|2. We then get

span (1, v, v ⊗ v, v|v|2, |v|4),

which is a 14-dimensional space. We can also add v ⊗ v ⊗ v instead of v|v|2 and
obtain

span(1, v, v ⊗ v, v ⊗ v ⊗ v, |v|4),

which is a 21-dimensional space.

The space �
(4)
4 is a 5-dimensional space. Adding 1, v and |v|2, we obtain the

10-dimensional space

span
(
1, v, |v|2, |v|2(viv j )i �= j , |v|2(v2

1 − v2
3

)
, |v|2(v2

2 − v2
3

))
.

This space is not stable under the translations. Consequently, we add v ⊗ v and
v ⊗ v ⊗ v. We get

span (1, v, v ⊗ v, v ⊗ v ⊗ v, |v|2(viv j )i �= j , |v|2(v2
1 − v2

3), |v|2(v2
2 − v2

3)),

which is stable under any rotation and any translation. This space has dimension
25. We could also add either |v|2v ⊗ v or v ⊗ v ⊗ v ⊗ v to the previous space.
We would then get

span (1, v, v ⊗ v, v ⊗ v ⊗ v, |v|2v ⊗ v),

and

span(1, v, v ⊗ v, v ⊗ v ⊗ v, v ⊗ v ⊗ v ⊗ v).

We add 1, v and |v|2 to the space �
(4)
8 and obtain the space

span
(
1, v, |v|2, (viv j

(
v2

i − 3v2
k

))
i �= j,i �=k, j �=k

,

× (
v4

i + 3v2
j v

2
k − 3v2

i

(
v2

j + v2
k

))
i �= j,i �=k, j �=k

)
.

But this space is not stable under the translations and we need to add v ⊗ v and
v ⊗ v ⊗ v. We get the following 29-dimensional space

span
(
1, v, v ⊗ v, v ⊗ v ⊗ v,

(
viv j

(
v2

i − 3v2
k

))
i �= j,i �=k, j �=k

,(
v4

i + 3v2
j v

2
k − 3v2

i

(
v2

j + v2
k

))
i �= j,i �=k, j �=k

.
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CONCLUSION

The classical moment spaces with maximal degree 2, 3 or 4 are

degree = 2 span (1, v, |v|2), (admissible)
span (1, v, v ⊗ v), (admissible)

degree = 3 span (1, v, v ⊗ v, v|v|2), (non admissible)
span (1, v, v ⊗ v, v ⊗ v ⊗ v − 3|v|2 I3 ⊗ v/5), (non admissible)
span (1, v, v ⊗ v, v ⊗ v ⊗ v), (non admissible)

degree = 4 span (1, v, v ⊗ v, v|v|2, |v|4), (admissible)
span (1, v, v ⊗ v, v ⊗ v ⊗ v, |v|4), (admissible)
span (1, v, v ⊗ v, v ⊗ v ⊗ v, |v|2(v ⊗ v − |v|2 I3/3)), (non admissible)
span (1, v, v ⊗ v, v ⊗ v ⊗ v, |v|2v ⊗ v), (admissible)
span (1, v, v ⊗ v, v ⊗ v ⊗ v, v ⊗ v ⊗ v ⊗ v

−6|v|2 I3 ⊗ v ⊗ v/7 + 3|v|4 I3 ⊗ I3/35), (non admissible)
span (1, v, v ⊗ v, v ⊗ v ⊗ v, v ⊗ v ⊗ v ⊗ v), (admissible)

which have respectively dimension 5, 10, 13, 17, 20, 14, 21, 25, 26, 29 and 35.
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